If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+96x+24=0
a = -16; b = 96; c = +24;
Δ = b2-4ac
Δ = 962-4·(-16)·24
Δ = 10752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10752}=\sqrt{256*42}=\sqrt{256}*\sqrt{42}=16\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-16\sqrt{42}}{2*-16}=\frac{-96-16\sqrt{42}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+16\sqrt{42}}{2*-16}=\frac{-96+16\sqrt{42}}{-32} $
| -7/2a=14 | | -y/7=10 | | x+2=34-9 | | 4x-8=3.5×-9 | | F(x)=√11x-x^2 | | 12t+3(t-8)-6=45 | | 5(x-4)/9=10 | | 3(4d+1)-4d=6(2-d) | | 58.4-2.6=p | | (x+7)(x+9)=(x+3)(x+21 | | x-15=8x-6 | | 5x+1/2=8 | | x^2+42x+8=0 | | x^2x2=288 | | 5x+1/2=0 | | 7+4b=27 | | 4x=1/3x^2-9 | | x^2-2=119 | | 6x-15=13x+12 | | n2−6n=0n26n0 | | ((x^2)-36))^0.5=8 | | 6(2x+3)=60 | | 41/4+t=567/8 | | 18=5x+3-2 | | -5(2x+4)=10(-x-2) | | 3(8/x)-2x=-2 | | 35x^2+2x-48=21877 | | -9(t-2)=4(t-15.) | | 23x=14 | | X^-12x=45 | | -7+x=-26 | | 5(2x=4)=2(7x-5) |